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VIBRATION AND STABILITY OF PLATES
USING FINITE ELEMENTS

R. G. ANDERSON, B. M. IrRONS and O. C. ZIENKIEWICZ

University of Wales, Swansea

Abstract—Simple displacement functions for the flexure of triangular plate elements have proved successful in
static solutions. Here the same element is used for calculating frequencies and buckling loads of plates.

Excellent accuracy is attainable in frequency calculations, and reasonably good stability predictions may be
made using quite coarse element subdivisions. Numerical integration is used in deriving element properties,
permitting thickness variation within an element. Some implications of this process are discussed.

Finally. a powerful “‘eigenvalue economizer” technique is presented which permits very fine subdivisions of
elements with eigenvalue calculations of limited size.

1. INTRODUCTION

THE principles of the finite element method together with a large number of examples of
its application have been described in many papers and have recently been dealt with fully
in a text {1].

This paper is concerned with vibration and stability problems of thin plates. All the
usual assumptions are made, as in classical plate theory [2]. The element chosen for the
analysis is the non-conforming triangular plate bending element first described in 1965 [3].
For details of the element shape functions and its formulation, readers are referred to
the text [1].

2. THEORY OF FREE VIBRATIONS OF PLATES
The matrix equation giving the natural frequencies w and the modal shapes {3} is
([(K]-w’M]) (s} =0 (1)

where [K] is the sum of the stiffnesses of the individual elements and [M] is the sum of the
elementary mass matrices over the whole structure including any concentrated nodal
masses. For computation (1) can be reduced to

[K]7'[M]{8} = (1/w?) {8}
but this technique is nefficient and another is recommended (equation (22) below).
If we consider the case with no concentrated masses at the nodes, [M] is assembled in
the usual way from the element mass matrices [m]°. These, like [k]°, are given in general
terms in Ref. [1] or in the case of a plate bending element by

il = [ [ pIRITN dxdy
where [N] is the shape function vector, and p is the mass per unit area of plate.
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The element stiffness and mass matrices can be found explicitly. The integration is
considerably easier in area co-ordinates, because a typical integral over the triangle is
given [6] by

ff LiLiLY dx dy = (twice area of triangle)i!j1k /(i + j+ k +2)! 2)

However, it is even simpler to program numerical integration (as described in the Appendix
with some comments on accuracy).

3. THEORY OF ELASTIC STABILITY OF PLATES
The strain energy of a single plate element subject to in-plane stresses can be written as
V= Vg+V, (3)

where V, is the strain energy due to the in-plane stresses acting on the second order strains,
and Vy is the strain energy due to plate bending. V, can be expressed as [1, 4, 5]

V, = —%Jf [ax(% 2+Gy(%v£)2+2rxy;—g.?;:|tdxdy 4)
or written in matrix form as
cw
wall[5 S ) e .
dy

Now, the lateral displacement w can be written as

w = |N|{5°) (6)

where N is again the shape function vector and {5°} is a vector of nodal deflections. Writing

ow cN

cx 0x (ser e

ow = oN 0} = [SL(S s (7)
cy cy

we have

v = _%” (51 T1S]"[0](S] {6}t dx dy. (8)
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On differentiating with respect to the nodal displacements this component of strain energy
gives a “‘geometric stiffness”

[ove
00,
L= ke )
ove
with
k] = — f f [ST"6](S]t dx dy. (10)

For the whole plate we assemble the element matrices:

(Ks]-[K]D{o} = {Q} (1)

where Q are the generalized loads.
If all the in-plane stresses can be increased by a factor 4 this will increase the geometric
stiffness proportionately. It is possible therefore to find a 4 which, with no external loading

Q, gives
(K] —A[K D {d} = 0. (12)

This is an eigenvalue problem like equation (1).
The geometric stiffnesses could be calculated by analytic integration from (2), but the
numerical integration process is preferred.

4. EXAMPLES: PLATE VIBRATION—CONSTANT-THICKNESS ELEMENT

Simple rectangular cantilever plates

The first problem was that of a rectangular plate with constant thickness, for which
tests and calculations have been done by Barton [7] and Plunkett [8].

The solutions used three different element subdivisions and the results are summarized
in Table 1. Figure 1 shows the shapes of the first three modes obtained with the coarsest
mesh. The accuracy is remarkable.

Skew cantilever plates

The plate was divided into 8 elements as in Fig. 2. Angles of skew ““0” were taken as 0°,
15°, 30° and 45° and the first three modes were calculated in each case. The results are
compared in Table 2 with those obtained by Barton [7] and Dawe [9]. As the angle of
skew increases the results from the Ritz method evidently become less accurate, particu-
larly for higher modes. The finite element solutions using the triangular element with a
fairly coarse mesh compare favourably with those of Dawe using the parallelogram
element and a much greater number of degrees of freedom.

The accuracy of the finite element method appears quite independent of the angle of
skew of the plate, unlike the conventional Ritz method, and can be seen in Fig. 3 to agree
closely with the corrected test results of Barton.
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TABLE 1. COMPARISON BETWEEN THEORETICAL AND TEST FREQUENCIES FOR A UNIFORM THICKNESS RECTANGULAR
CANTILEVER PLATE (LENGTH a, WIDTH a/2)

)/ V/ (D/pha®)

Results from Barton

Finite element
(triangular non-conforming)

Mode Test results
of Plunkett 2 x 8 mesh on
half plate with
Conventional 2x 1 mesh 4 x 2 mesh use of symmetry
Ritz method Test 4 elements 16 elements equivalent to
64 elements
1 347 342* 350 339 344 344 (s)
2 1493 14-52* 14-50 15-30 14-76 1477 (a)
3 21-26 2086 21-70 2116 21-60 2150 (s)
4 4871 4690 4810 49-47 4828 48-19 (a)
5 60-50 67-46 60-56 60-54 (s)
6 92-30 8884 91-79 (s)
7 94-49 9399 92-80 92-24 92-78 (a)
8 11870 117:72 119.34 (s)
9 12510 11896 12423 (s)
10 154-00 15315 (a)
11 176-00 17446 (s)
12 196-00 199-61 (s)

Results* have been modified by Barton to correct for the means of testing used by him. (s) denotes symmetrical

mode ; (a) antisymmetrical mode.

MODE 1

F1G. 1. Vibration of a cantilever plate (4 elements) modal shapes.
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TABLE 2. COMPARISON BETWEEN THEORETICAL AND TEST FREQUENCIES FOR SKEW CANTILEVER PLATES

//(D/pha*)
Finite element Finite element
Angle Mode Results by Barton results by Dawe results
of skew using parallelogram  triangular element
o° element
Conventional Corrected 16 elements 8 elements
Ritz method Test Test 75 degrees of 18 degrees of
freedom freedom

0° t 349 337 343 347 343
2 855 826 832 852 861

3 21-44 20-55 21-54 21-5
15° 1 360 338 344 359 357
2 8-87 863 8-68 871 8-60
3 2149 21-59 2175
30° 1 396 382 3-88 395 398
2 10-19 923 9-33 942 9-19
3 24-51 25-56 24:56
45° 1 4-82 426 433 4-59 4-67
2 1375 11-07 1121 11-14 11-01
3 26:52 2748 27-56

FINITE ELEMENT
A RITZ METHOD 4
© TEST RESULTS

[0
u 10 A///
© ANGLE OF SKEW
& 6——-./D MODE 2
w
D /pha
5 —
/-r/:)
Q———é""‘/e MODE 1
0 L .
0 10 20 30 40 50
ANGLE OF SKEW (DEGREES])
F1G. 2. Skew plate (8 elements). F1G. 3. Frequency of vibration of skew cantilever plates.

Plates with arbitrary boundaries

The freedom given by the triangular element to deal with arbitrary shaped plates is
perhaps not evident from the previous examples, which were used for test purposes only.
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While practical calculations have recently been done for variable thickness buttress
dams [10] few suitable test examples are available.

However, a clamped circular plate with a concentric hole, tested by Joga Rao [11]
gives comparative results again in good agreement (see Fig. 4).

Figure S and Table 3 show results for square clamped plates with central circular holes
of varying diameter. No test results are available for these cases.

TABLE 3. FREQUENCIES OF SQUARE CLAMPED
PLATE WITH CIRCULAR HOLE

w/ \/( D/pa*t)

Diameter hole o, ba

2R/a

0 35-375 130-540
0125 35-138 128-637
025 37600 125-464
0-3333 41419 123-275
0-375 44-240 122-020
05 57-844 124-308

¢, 1s nondimensional frequency of first mode.
¢, is nondimensional frequency of fourth
mode.

PLATE CLAMPED ON OUTER
EDGE, FREE AY CENTRE
MESH USED OVER

WHOLE PLATE

B, 1785 (W= 3

[cv ioca rao @,=17-61 tv=11])

SIMPLY PLATE SIMPLY SUPPORTED

SUPPORTED ON OUTER EDGE, FREE
AT CENTRE.

MESH USED ON ¥ PLATE

WITH CONDITIONS OF

SYMMETRY

@ =499 (¥= -3)
x @, = 2237

[cv.J06a RAD P =50676 ¥= ) ]

F16. 4. Circular plates with concentric holes of half the radius of the plate.
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y

4

7/

F1G. 5. Square plate with hole showing mesh used to solve quarter plate.

5. EXAMPLES: PLATE VIBRATION—VARIABLE-THICKNESS ELEMENTS

The usual technique with a variable thickness plate is%o average the thickness of the
plate over an element, and to consider each element as being of constant thickness.
Theoretically one can introduce the thickness ““t” into the formulation of the mass and
stiffness matrices as a function of the x and y co-ordinates. However, even if “1 is only a
linear function of x and y the integrals for the mass and stiffness matrices are complicated.
If, however, numerical integration is used no difficulties arise. The only disadvantage is
that one might need a higher order integration formula than for a constant-thickness
element.

Comparison between constant- and variable-thickness elements for a variable-thickness
cantilever
The case chosen to compare constant- and variable-thickness elements was a rectangular
cantilever, divided into a regular 3 x 6 mesh as shown in Fig. 6. The finite element results
are compared with the experimental results of Plunkett [8] in Table 4. In general the results
for the variable-thickness elements agree better with experiment than those of the constant-
thickness elements, particularly in the higher modes.
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TABLE 4

w/ \/,(D,/,om“)

Finite element

Test results

Mode of Plunkett Variable thickness Constant thickness
element element
(a) (b}
1 2-47 2:40 2:33
2 106 1127 1002
3 14-5 1514 1407
4 28-7 29-41 21-20
5 344 3730 2627
6 47-4 48.99 2705
7 525 5487 3705
8 54-0 5667 42-41
9 635 68-06 48-13
10 680 71-30 5140
11 857 8373 6747
12 911 8774 71-32
8=37"

&
3

1

{a} (b}

F1G. 6, Finite element mesh division of wedge section rectangular cantilever plate.

Comparison of the finite difference and finite element methods in the solution of variable-

thickness plates

The square variable-thickness plate shown in Fig. 7 was tested and solved using finite
differences by Basova Raju [12] for two cases of variable thickness, and both for simply
supported and for encastered edges. The finite difference solution was carried out for various
mesh sizes and the results were extrapolated to find the values given for an infinite mesh.
The finite element solution used a 5x 5 mesh on a quarter-plate, with variable thickness
elements, and the results are tabulated in Table 5. The finite element results are good, in
most cases lying between the test results and those extrapolated for an infinite mesh in the
finite difference solution.
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FiG. 7. Mesh for the vibration problems of a square plate of variable thickness (variable thickness
element used). Results to be compared with the finite difference results of B. Basava Raju.
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FI1G. 8. Swept back cantilever plate of variable thickness : (a) isometric view, (b} element.



TaBLE 5. NATURAL FREQUENCIES {t/.\/(D/pta*))

Clamped plate

Results of B. Basava Raju

Finite difference

Simply supported plate

Results of B. Basava Raju

Finite difference

Model Mode Test Finite
{a) {b} element
Model A 1 61-534 63-790 63-20 6328
feage = 2enye 2 11164 120-392 11670 11926
3 161688 178-385 172-20 171-26

4 171-846 190-745 200-48 2083

5 174234 204199 201-55 2085
6 229-199 259918 25857 25866
Model B i 19-399 20-936 21-58 2140
feage = foenre 2 39-54] 43-584 46-54 4592
3 60-165 67-604 7028 6752
4 674936 77-749 8700 8545
5 70-33 80-139 8808
6 8545 95-848 10796 102:49

Model Test Finite
{a) {b) element

Model D 31431 32:196 32:84 3233
t=2t, 75263 78-809 8003 7842
122163 121-544 12863 126:43

134:064 138754 139-55 153-26

136759 152549 145-85 15701

189-524 207-523 20344

Model E 13-567 13-568 14-20 13-36
t=ty/ 32-169 33-195 34-78 32:74
50-587 52:279 5397 5100

60-771 66-121 6816 6700

62816 68-001 70-93 6700

77685 83339 8123

Finite difference (a) using same mesh as finite element solutions ; (b) extrapolating to get values of infinite mesh.
Finite ¢lement solutions use variable thickness element.

orol
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A variable thickness swept-back cantilever

To demonstrate further the versatility of the finite element method, the swept-back
cantilever shown in Fig. 8 was analysed. The frequencies and modal shapes are given in
Fig. 9.

MODE 1
MODE 2 ¢ =346 ’
MODE 3 @ =1895 [ O3

F1G. 9. Modal shapes of swept back cantilever plate.

6. EXAMPLES: BUCKLING STABILITY PROBLEM

The object of this section is to apply the theory to stability problems. The case chosen
for this purpose was a simply supported square plate under uniform stress in one direction
only. The meshes are shown in Fig. 10. Evidently, to obtain answers of high accuracy a
very fine mesh is required. This is confirmed by the results of Kapur and Hartz [4]. (It
appears that their rectangular element gives slightly better answers for the same mesh
size than the triangular element. This is to be expected, as the rectangular element is of
slightly higher order.)

Other examples from finite element buckling analyses of plates are shown in Figs. 11
and 12, but the accuracy is limited by the relatively coarse meshes used.

The conclusions reached are therefore that to obtain answers of accuracy 1%, or less
a fine mesh is required. For accurate and economic results the eigenvalue “‘economizer”
techniques described later in this paper are needed.
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Fi1G. 10. Stability of a simply supported plate under
a uniform stress in one direction (exact K = 4-0).
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FicG. 11. Stability of clamped plate under a uniform
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F1G. 12. Buckling of rectangular plate with
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7. EXAMPLES: STABILITY OF A PERFORATED PLATE

A series of experimental tests were carried out at Swansea [13] to determine the buckling
in shear of square clamped plates with central holes. Initially, plane plates were used with
variable diameter holes, and later a constant diameter plate was tested with a variable
stiffness flange around the hole. Finite element calculations were used to verify the experi-
mental results.

Fi1G. 13. Square plate with hole showing mesh used.

RADIUS R=%

_Tem d*t

wip 8%

F1G. 14. Buckling mode of square clamped plate with central hole.
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FLANGE OIMENSIONS
W, t=bto

o Experimental value

CRITICAL SHEAR STRESS COEFFICIENT k.
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FiG. 16. Comparison of experimental and computed values of k for a square clamped plate with a hole
under uniform shear.
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The mesh illustrated in Fig. 13 gave 92 degrees of freedom, and the answer for the plate
without a hole was in error by 8 %,. This is partly due to the fact that a 19, unsymmetrical
loading was applied to avoid numerical difficulties, and partly due to the coarse mesh. A
mesh of equal-sized elements gave better results but was unsuitable for the plate with a
hole. The initial stress distribution over the plate was found with a triangular finite element
plane stress programme. Figure 16 compares some computed and experimental buckling
loads.

8. ELIMINATION OF VARIABLES

The engineer frequently has structural problems of hundreds, or even thousands, of
degrees of freedom. The eigenvalue solutions of full matrices however are very expensive,
and even with only a hundred degrees of freedom they may use a great deal of computer
time and storage. Clearly a technique is needed to eliminate variables, so as to reduce the
number of degrees of freedom in dynamic structural problems. (See Guyan [14], and
Irons [15].) It transpires that the technique is equally applicable to stability problems,
although it will now be developed for vibration problems only; in stability problems the
kinetic energy terms are replaced by the second order strain energy terms.

The technique used here retains only a small proportion of the nodal deflections, here-
after termed ‘‘masters”. The remaining “‘slave” deflections take the values giving least
strain energy, regardless of what effect this has on the kinetic energy. Thus a slave node is
assumed free from inertial forces in the vibration problem, and the deflected shape is
assumed to be a linear combination of the deformation vectors due to unit loads applied
for each master deflection in turn.

Given some engineering skill in choosing the master deflections, and given a problem
for which point loads do not give strong local displacements, very little accuracy may be
lost. The number of master nodes may be only 109, of the total, and only one deflection
out of three may be retained at each, yet the frequencies may be exact for practical pur-
poses. However, experience does suggest that there should be at least twenty master
deflections. Such success may be ascribed to Rayleigh’s principle, that a first-order error
in modal shape gives only a second-order error in estimated frequency. When satisfactory
results are obtained the suppressed degrees of freedom correspond to high frequencies, a
fact which could benefit time-response calculations because it is the highest frequencies
that first cause numerical instability. Conversely however it is possible to suppress or
falsify the lower frequencies if inappropriate displacements are eliminated. (See below.)

The reduction is carried out simultaneously in both the mass and stiffness matrices,
which occupy the same (N 4 1) x N array in storage. In the frontal technique the reduction
process alternates with the assembly of elements [15] according to input data which tells
the program to eliminate certain deflections immediately, to turn them into slaves. Clearly
the storage demands can be very small.

A typical operation is now described algebraically. The strain energy of an N degree
of freedom system is written as

X1

xixp . oxy] K] (13)
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and the kinetic energy as

(UZ

2—[x1x2...xN] M] . (14)
g .

XN
The condition that minimizes the strain energy with respect to x, is:

Kaxi+ ...+ Ko+ ... +Kgxy = 0. (15)

Substituting for x, in (13) gives a reduced form [KT*, with row and column s deleted and
with

K?; = Kij_Kis(st/Kss)‘ (16)
Similarly [M] becomes [M]* with

M?j = Mij - Mis(st/Kss)— Mjs(KiS/Kss)+ Mss(Kis/Kss)(st/Kss)' (1 7)

For computation the process is further simplified thus:
VI=[Ki Ko Ky (18)
Vg = _(Mss/Kss)V’lr+|:M1s’M2s~"MNs] (19)
[K)* = [K]-K 'V, V1] (20)
[M]* = [M]-K,'[ViVi+V,VT] (21)

apart from row and column s in both [K]* and [M}* which must be deleted. The frontal
process operates correctly as long as all the M, and K for the row s are fully summed as
in equation (1).

Eigenvalues are found by power iteration using the same (N+1)x N array and
associated vectors. With over-writing (1) is reduced to the form

[Z16* = (1/w?)6*
(2] = (L) '[M][U]!
with
* = Us (22)
where
(K] = [L][U]
[U] = [L"] = upper triangular matrix.

This process is as necessary as elimination in economizing core storage.

An interesting theorem extends the conclusion that elimination must increase the
lowest frequency and reduce the highest. Consider the effect of a single elimination that
restricts the freedom of x,, and consider how the constraint could be simulated given a
leverage system that merely senses any departure from the constraint, any disobedience of
the slave, and converts it into a separate linear movement. If this agitates a mass, which is
progressively increased, each frequency decreases, as may be argued by computing the
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Rayleigh quotient at each mass increment. Conversely if it distorts a spring each frequency
increases. Complete slavery is imposed either by a heavy mass or by a stiff spring, so the
new frequencies must in general interlace the old, although in theory certain frequencies
could remain unchanged.

Suppose now that an N degree of freedom system has been reduced to n degrees of
freedom by creating (N —n) slaves, so that interlacing occurs at each step. It follows that
within the range of the first k frequencies of the original system there cannot be more than
{k—1) frequencies of the reduced system. This theorem, mis-stated in Ref. [15], usually
implies interlacing in practice, because otherwise a frequency in the range of interest has
been inadvertently suppressed.

(@) Vibration problems with elimination

The square cantilever plate shown in Fig. 17 was used for initial testing. It was divided
into a 5x 5 mesh, giving 90 degrees of freedom, and various patterns of elimination were
tried. The results are instructive.

Using elimination, one can deal with a complex structure containing well over 300
nodes, with a relatively small computer such as the University College of Swansea L.C.T.
1905. To demonstrate this a rectangular cantilever plate was divided into a 12 x 24 mesh,
giving 576 elements and 350 nodes. The system shown in Fig. 18 contains 936 degrees of

PLATE WITHOUT MODE |u//Djptat
ELIMINATION ; 3 ioe
2 | 8 538
NUMBER OF DEGREES 3 21 430
Y OF FREEOOM =90 o |2 oss
N foTeta
NODES NOT RINGED MODE |w//0/ptd
[ ARE ELMNATED ] 3. 470
NUMBER OF MASTER 2 8- 540
DISPLACEMENTS = 54 3 |21 sse
Le |27 218
N
ALL DEGREES OF MODE |/ T/t
[ ] FREEDOM ELMNaTED ; 3 470
EXCEPT LATERAL
DEFLECTIONS AT 2 |8 s
RINGED NODES
3 |20 645
NM.D.= 18 ¢ |27 28
ALL DEGREES OF MODE |u//Tjpta
- FREEDOM ELIMINATED 2
N\ ) EXCEPT LATERAL 1 147
DEFLECTIONS AT 2 o s0¢
RINGED NODES
3 | 22690
N.M.D. s6 L & | 29490

FiG. 17. Elimination of variables in the vibration problem of a square cantilever plate.
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ALL OTHER NODAL DEFLECTIONS ARE ELIMINATED

FiG. 18. Division of rectangular cantilever plate into 12 x 24 mesh.

freedom, but after elimination only 32 master deflections are left. The results for the first
5 modes of vibration as given in Table 6 agree well with known results. The entire calcula-
tion was core-contained and the dimensioned arrays totalled 11,500 storage locations.

TABLE 6. THE NON-DIMENSIONAL FREQUENCIES OBTAINED
FOR A RECTANGULAR CANTILEVER PLATE DIVIDED INTO
A 12 x24 MESH

¢ = w,"v/(Dﬂpha“)

Mode
Finite element Conventional
Ritz method
1 34403 3472
2 14-8322 1493
3 21-5393 2161
4 49-1961 4871
5 619205

The initial problem contains 936 degrecs of freedom
which by elimination as shown in Fig. 18. are reduced
to 32

(b) Stability problems

It can be seen from results quoted earlier that stability problems require considerably
more nodal points than vibration problems to yield answers of similar accuracy, and
elimination therefore appears to be of more potential use in civil engineering for stability
problems. Without elimination the largest problem possible on the LC.T. 1905 computer
contains only 92 degrees of freedom. Thus for a simply supported square plate under
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uniform stress in one direction the finest division possible is a 5 x 5 mesh on a quarter plate
(using symmetry), giving an error of 2-5%, With elimination a finer mesh can be used,
giving more accurate answers, and examples are quoted in Table 7.

TaBLE 7. COMPARISON OF THE BUCKLING FACTOR CALCULATED
FOR A SQUARE SIMPLY SUPPORTED PLATE USING ELIMINATION
OF VARIABLES

Sketch Mesh size K= —

E:E’ e Exact solution 400

5 x 5 mesh on a quarter 390
plate
No elimination

3 x 3 mesh on a quarter 3-60

plate eliminated leaving
:i:t only masters of lateral

deflection at circled
nodes

8 x 8 mesh on whole 394
plate reduced to
masters on 4 x 4 mesh

8 x 8 mesh on a quarter 397
plate elimination to
masters on 4 x 4 mesh

12 x 12 mesh on a 398
| o 4 quarter plate eliminated
L to leave masters on
. 4 % 4 mesh where circled
nodes are left with
lateral deflection only

9. THE EFFECT OF IN-PLANE STRESS UPON THE VIBRATION
OF A THIN PLATE

The effect of any in-plane compressive stress on a plate is to reduce its bending stiff-
ness. Similarly an in-plane tensile stress effectively increases the stiffness. Thus in the first
case the natural frequency of the plate is lowered and in the second raised.

The equation for the frequencies is again as given in equation (1) but when an in-plane
stress acts on the plate, [K] becomes the bending stiffness of the plate [K ] less the stiffness
due to in-plane stresses [K,]. Thus equation (1) becomes

{[Kg)—[K{—0?[M]}{d} = (23)

where [K], [K,], and [M] are found as before, and equation (23) is solved as in previous
vibration problems.
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To ensure accurate results, the solution included elimination of variables. The case
chosen was a square plate simply supported around its edges, with a variable in-plane stress
in one direction. Only the nodes indicated in Fig. 19 remained after elimination.

The buckling stress of the plate was determined, and then a series of vibration analyses
were carried out to determine the natural frequency of the plate under in-plane stresses
expressed as a fraction of the buckling stress. The results are given in Table 8 and Fig. 20,
which shows that as the in-plane stress approaches the buckling stress the (frequency)? of
the plate decreases linearly to zero.

TaBLE 8. FREQUENCY OF SQUARE PLATE UNDER UNIFORM LOAD IN ONE DIRECTION GIVEN AS
OF BUCKLING LOAD

Load as
of Ky N ¢2 o $a 1
—-200 34150 57046 761619 99-33 1166-2
—100 27811 53333 63995 89-698 7735
- 50 24048 51-38 57093 84-56 5783
0 19:596 49154 49-584 79-165 384-0
20 17-508 45944 48-560 7692 306-5
40 15-139 42:299 47-708 74619 2292
60 12-331 38-333 46-860 72259 1521
80 8-661 33938 45977 69-832 750
90 6-046 31-526 45-535 68-591 366
95 3-7046 30175 45-154 67-135 137
97-5 2-7836 29:594 45-202 67-649 7-7
99 1-4096 29-193 45134 67-458 20
y
3
&yy SUPPORTED
. -— 2
= = R TR
= =
T : := * Kexacr= 6°0
- - $,i5=0) = VD//?“ =19-596
— -—

SIMPLY
SUPPORTED {;

& P,
F1G. 19. Mesh used to investigate the effect of in-plate stresses on the vibration of a simply
supported plate.
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(FREQUENCY)?
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500
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pegl- kb
K
00 e Bloo = BilKey - k)
Kernr
(/ 200
/
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FiG. 20. Graph of frequency squared (of first mode) against percentage of buckling load applied.
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APPENDIX
NUMERICAL INTEGRATION IN AREA CO-ORDINATES

The method
In deriving stiffness, mass, stability and other element matrices, integrals of the form

[]oiLard area (A1)
arise frequently, where ¢ is a known function and the integration is taken over the triangle.
The area co-ordinates define a point P by ratios, so that in Fig. Al

area (P23) area (P23)
1= T PO T

area (123) A

The co-ordinates are thus not independent and

L1+L2+L3 = ]

F1G. Al. Integration over a triangle.
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An elementary area defined by lines incrementing L, and L, as in Fig. Al is

dh.dH _hdL,.HdL,
COoS o N COoS &

d (area) = = dL,dL, 2A.

Noting the limits of integration the integral (A1) can be written as
L,=1 Ly=1-1,
2A J ¢(L,, Ly, Ly)dL, dL,.
Li=0 vL;=0

In numerical integration the integrals are replaced by summations using *“n”” Gauss or
Radau sampling points in each direction [16]. The double integral therefore becomes

qud(area): S S No(Li,Ly. Ly)

i=1j=1
where the weighting factor

N = 2AS[{H[jI(1—- L) A
with
L, = Alli]
L, = AJ[jI(0-Ly)
Ly=1-L,-L,

throughout. The constants for various values of n are given in Table Al.

TABLE Al. GAUSS AND RADAU INTEGRATING CONSTANTS

Number of
integrating points AJ[J] H{J) AIlI] AS[I
in each direction J=1,n J=1,n I=1n I=1n
n=1 05 1-0 0-3333333333 075
(1-0) (0-25)
n=2 02113248654 05 0-1550510257 0-3764030627
07886751346 0-S 06449489743 05124858262
(1-0) [(2RRRRARERAS)
n=73 0-1127016654 02777777778 0-0885879595 02204622112
05 0-4444444444 04094668644 0-3881934688
0-8872983346 02777777778 0-7876594618 0-3288443200
(1-0) (0-0625)
n=4 0-0694318442 0-1739274226 00571041961 0-1437135608
0-3300094782 0-3260725774 02768430136 0-2813560151
06699905218 0-3260725774 0-5835904324 0-3118265230
09305681558 0-1739274226 0-8602401357 0-2231039011
(1-0) (0-04)
n=>5 0-0469100770 0-1184634425 0-0398098571 01007941926
02307653449 (0:2393143353 01980134179 02084506672
05 0-2844444444 0-4379748102 02604633916
0-7692346551 0-2393143353 06954642734 0-2426935942
0-9530899230 01184634425 09014649142 01598203766

(1-0) (0-277777718)
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The accuracy

In most problems four point integration rules were used (n = 4), and the results were
of course indistinguishable from those where the matrices were integrated analytically.
Further, the computer times were unchanged, so that no penalty was paid for a device
which makes the programmes simpler and sidesteps the tedious algebra.

It is important to investigate whether fewer integrating points could give adequate and
convergent solutions. As elements get smaller, the variation of the displacements, slopes
and curvatures decreases and it might appear that in the limit a single-point Gaussian
integration would suffice. Indeed, convergence can be demonstrated with one-point
integration, by arguments following Ref. [3], addendum.

An example given in Fig. A2, with numerical results in Table A2, concerns the vibra-
tion of a square cantilever plate; frequencies are compared using mesh subdivisions and
four integration rules. Even with the finest mesh the one-point integration gives poor
results, but the 2 x 2 rule is almost adequate. Little is gained by going above the 3 x 3
integration process.

g MESH (a)
%
/]
/]

D//Do‘

o MESH (b)

7 /
‘AI: MESH {c)
|- BN

F1G. A2. Meshes used on cantilevered plates to investigate the numerical integration of elemental mass
and stiffness matrices.
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TABLE A2. FREQUENCIES CALCULATED FOR CANTILEVER PLATE SHOWN USING GAUSS—RADAU RULES TO INTEGRATE
THE ELEMENT MASS AND STIFFNESS MATRICES

(¢ is the non-dimensional frequency = w/ \/(D/pa‘t))

1 point 2 point 3 point 4 point
Mesh Mode Gauss—-Radau Gauss-Radau Gauss-Radau Gauss—Radau
@ ¢ ] ¢
| 1-460 3-191 3217 3216
(a) 2 9-115 9-065 9-058
3 42076 27071 26426
1 2-759 34336 3-4344 34344
2 6474 8:6222 86197 86194
(b) 3 8779 211792 21-5356 21-5228
4 12:821 26:2970 267654 26:7481
5 18-489 29-7356 304174 30-3765
1 3-286446 346697 3:46701 3-46700
2 7-520522 8-54947 8:549254 8-:549243
3 17-102822 21-51732 21:52720 21-52702
© 4 2262412 2698304 2699711 2699674
5 24-7099 31-04874 31-06820 310674
6 332939 53-3863 534862 534798

(Received 20 December 1967 ; revised 6 May 1968)

A6cTpakT—IIpocTsie QYHKUMK EPEMELUEHUI 4018 M3ruba 3IEMEHTOB TPEXYTOJIbHBIX IUIACTHHOK B 4acHE
NPHTOOHLI [JIA CTaTHYECKUX pelienuii. B HacTosweit pabote necnosbiyeTcs 3ToT cnocob a1a onpeneneHus
YacTOT M CHJI BbITLY4MBAHHS TLTACTHHOK.

TTonyyeHa OT/IM4HAA TOYHOCTH B PACcYETaX YaCTOTHI U MOXHO MPEAYCMOTPETh MOYTH XOPOLLHE YCITOBHS
YCTOMYMBOCTH, KOrIa HMCXOAMTCA M3 COBEPLUEHHOTO KPYMHOIrO paslefieHds nemeHTa. Mcnonbiyerca
YUCTICHHOE MHTErpUPOBAHNE NSl OMpPedesieHus CBONCTB JJIEMEHTA. DTO MHIETPHPOBAHME MO3Banser
y4ecTb U3MeHelne TOJILLMHbI dneMenTa. PaccmaTpuBatoTes HekoTopble neranu crnocoba pacyera.

B 3aKao4eHHe MPEACTABJISACTCS CYHIECTBEHHbIH METOX COOTBETCTBEHHBIX 3HAYEHHMH C TOYKH IPEHHA
IKOHOMHHU, KOTOPBIA NOIMYCKAET XOPOLUOE palfeNieHHe IEMEHTOB NPUH pacdeTax cOOCTBEHHBIX 3HaYEeHMH
OrpaHHYeHOro pa3Mepa.



